You currently have no access to see or download this content. You re welcome log in with your institutional or an individual account if you need to have access to this content with either of these. mirroring a restricted preview the this publication:

You are watching: Solubility of benzoic acid in hot water


The benzoic mountain solubility in aqueous phase and also in assorted aqueous mixture of methanol, ethanol and 2-propanol was figured out at temperatures varying from 303 to 333 K through an analytical technique. The results verified that the solubility of the mountain in alcohols-water binary mixtures is high as compared to pure aqueous phase. The enhancement of alcohols to water favors the dissolved of benzoic acid which increases further with the rise in alcohols content of water in ~ the investigated temperature range. The benzoic mountain solubility in water alone and also aqueous mixtures of the selected alcohols remained in the order of; 2-propanol in water > ethanol in water > methanol in water > pure water. That is likewise observed that within the investigated temperature range, the acid solubility rises with climb in temperature in both the aqueous phase and also alcohols-water binary solvents. The logarithm that the mole fraction of the acid’s solubility likewise showed a straight trend against the temperature. The experimental results obtained in the existing study were contrasted with the reported literary works for the studied acid and also other organic acids in various solvents and also showing a great agreement. The research will have implications in the processes involving separation, crystallization and pharmaceutical formulation in various industries.

Keywords: benzoic acid; binary mixtures; mole portion solubility; medicine formulations

See more: Subtraction Of Whole Numbers Is Commutative, Properties Of Whole Numbers


Authors are highly thankful to Kohat university of scientific research and technology (KUST) because that laboratory infrastructure for the research students and higher Education commission (HEC) that Pakistan for financial support.


1. M. A. Pene, A. Reıllo, B. Escalera, P. Bustamante, Int. J. Pharm. 321 (2006) 155. Search in Google Scholar

2. X. Wang, C. S. Ponder, D. J. Kirwan, Cryst. Grow. Design 5 (2005) 85. Find in Google Scholar

3. A. C. Oliveira, R. F. Pires, M. G. Coelho, M. R. Franco Jr., J. Chem. Eng. Data 52 (2007) 298. Search in Google Scholar

4. A. Apelblat, E. Manzurola, N. A. Balal, J. Chem. Thermodyn. 38 (2006) 565. Find in Google Scholar

5. J. Jin, C. Zhong, Z. Zhang, Y. Li, liquid Phase Equilib. 226 (2004) 9. Search in Google Scholar

6. L. Dian-Quing, L. Jiang-Chu, L. Da-Zhuang, W. Fu-An, liquid Phase Equilib. 200 (2002) 69. Search in Google Scholar

7. J. Xue, C. Yu, Z. Zeng, W. Xue, Y. Chen, oriental J. Chem. Sci. 3 (2017) 1. Search in Google Scholar

8. N. Sunsandee, M. Hronec, M. Štolcová, N. Leepipatpiboon, U. Pancharoen, J. Mol. Liq. 180 (2013) 252. Search in Google Scholar

9. B. Long, J. Li, R. Zhang, L. Wan, liquid Phase Equilib. 297 (2010) 113. Find in Google Scholar

10. F. L. Mota, A. P. Carneiro, A. J. Queimada, S. P. Pinho, E. A. Macedo, Eur. J. Pharm. Sci. 37 (2009) 499. Find in Google Scholar

11. H. Yannian, Z. Xiuhua, Z. Yuangang, W. Lu, D. Yiping, W. Mingfang, W. Huimei, Iran. J. Pharm. Res. 18 (2019) 168. Search in Google Scholar

12. Z. Sayyar, H. J. Malmiri, Zeitschrift hair Physikalische Chemie (2019) DOI: 10.1515/zpch-2018-1152. Find in Google Scholar

13. T. Loftsson, D. Hreinsdóttir, AAPS Pharm. Sci. Tech. 7 (2006) E1. Find in Google Scholar

14. S. N. Bhattachar, L. A. Deschenes, J. A. Wesley, drug Discov. Today 11 (2006) 1012. Find in Google Scholar

15. S. H. Maron, J. B. Lando, Fundamentals of physics Chemistry, 4th Ed., Macmillan, new and military Sources, scholastic Press, mountain Diago (1997). Find in Google Scholar

16. P. S. Mohanachandran, P. G. Sindhumol, T. S. Kiran, Int. J. Comprehen. Pharm. 4 (2010) 1. Search in Google Scholar

17. J. W. Hill, R. H. Petrucci, basic Chemistry, 2nd Ed., Prentice Hall, Australia, top Saddle River, NJ (1999). Find in Google Scholar

18. A. S. Alshetaili, Zeitschrift fur Physikalische Chemie (2018) DOI: 10.1515/zpch-2018-1323. Search in Google Scholar

19. N. S. Khattak, L. A. Shah, M. Sohail, S. Ahmad, M. Farooq, L. Ara, S. I. Kader, Zeitschrift fur Physikalische Chemie (2018) DOI: 10.1515/zpch-2018-1241. Find in Google Scholar

20. C. Marche, C. Ferronato, J. Jose, J. Chem. Eng. Data 49 (2004) 937. Search in Google Scholar

21. O. I. Garcia, A. C. Rasmuson, J. Chem. Eng. Data 43 (1998) 681. Find in Google Scholar

22. A. Shalmashi, A. Eliassi, J. Chem. Eng. Data 53 (2008) 199. Find in Google Scholar

23. F. L. Nordstrom, A. C. Rasmussen, J. Chem. Eng. Data 51 (2006) 1668. Find in Google Scholar

24. M. Barrett, M. McNamara, H. Hao, B. Glennon, Chem. Eng. Res. Style 88 (2007) 108. Search in Google Scholar

25. D. O’Grady, M. Barrett, E. Casey, B. Glennon, Chem. Eng. Res. Architecture 85 (2007) 945. Search in Google Scholar

26. K. Jorge, Soft Drinks/Chemical Composition, In Encyclopaedia of Food Sciences and Nutrition, B. Caballero, P. Finglas, F. Toldra, Eds., 2nd ed., academic Press, new York (2003) P. 5346. Find in Google Scholar

27. G. Tully, G. Hou, B. Glennon, J. Chem. Eng. Data 61 (2016) 594. Search in Google Scholar

28. X. Gao, Z. X. Zeng, W. L. Xue, X. R. Fan, J. Chem. Eng. Data 60 (2015) 2273. Search in Google Scholar

29. F. Shakeel, G. A. Shazly, N. Haq, J. Chem. Eng. Data 59 (2014) 1700. Search in Google Scholar

30. S. Black, P. L. Dang, C. J. Liu, H. Y. Wei, Org. Procedure Res. Develop. 17 (2013) 486. Search in Google Scholar

31. W. T. Cheng, S. Feng, X. Q. Cui, F. Q. Cheng, Adv. Mater. Res. 518 (2012) 3975. Search in Google Scholar

32. Q. Jia, P. Ma, S. Yi, Q. Wang, C. Wang, G. Li, J. Chem. Eng. Data 53 (2008) 1278. Find in Google Scholar

33. R. F. Pires, M. R. Franco Jr., J. Chem. Eng. Data 53 (2008) 2704. Search in Google Scholar

34. Q. Wang, L. Hou, Y. Cheng, X. Li, J. Chem. Eng. Data 52 (2007) 936. Search in Google Scholar

35. J. Thati, F. L. Nordstrom, A. C. Rasmuson, J. Chem. Eng. Data 55 (2010) 5124. Find in Google Scholar

36. Y. Yang, L. Zhou, C. Wang, Y. Li, Y. Huang, W. Yang, B. Hou, Q. Yin, J. Sol. Chem. 47 (2018) 1740. Search in Google Scholar

37. Y. Tong, S. Zhai, K. Wang, H. Li, Q. An, J. Chem. Thermodyn. 133 (2019) 70. Search in Google Scholar

38. Z. W. Wang, Q. X. Sun, J. S. Wu, L. S. Wang, J. Chem. Eng. Data 48 (2003) 1073. Find in Google Scholar

39. A. Singh, advance Experimental physics Chemistry, first Ed., Campus books International, new Delhi (2005) 167. Find in Google Scholar

40. G. T. Castro, M. A. Filippa, C. M. Peralta, M. V. Davin, M. C. Almandoz, E. I. Gasull, Zeitschrift fur Physikalische Chemie 232 (2018) 257. Search in Google Scholar

41. B. W. Long, L. S. Wang, J. S. Wu, J. Chem. Eng. Data 50 (2005) 136. Search in Google Scholar